Facility for slice imaging of quantum state-resolved photodynamics

Molecular photodynamics can be studied at the quantum state-to-state level using hexapole quantum state-selection and orientation techniques in combination with high-resolution slice imaging of quantum state-resolved photofragments.

A dedicated 1.5 meter long molecular beam apparatus, equiped with a short pulse homebuilt piezo valve and a hexapole state-selector is available to produce strong pulsed beams of translationally cold and quantum state-selected molecules. At present 3 nanosecond NdYAG pumped tunable laser systems and an Excimer laser are available to generate up to four independent laser beams with colors ranging from 193–700 nm.

The detector is a high-resolution slice imaging velocity map single particle detection system consisting of a high-speed (3 nanosecond) homebuilt gain-gated small pore (5 micron) Chevron Micro-Channel-Plate / fast Phosphor / large frame (2048*2048 pixels) CCD camera. The spatial position of single ion spots are detected and centroided in real time to obtain subpixel spatial resolution down to the MCP pore diamater.

Within the next year a major upgrade of the laser systems will be implemented to operate the experiments at 500 Hz repetition rate using novel high-repetition rate tunable laser systems.

This experimental facility is available for state-of-the-art quantum resolved experiments on state-selected or oriented molecular photodynamics with full polarization controlled slice imaging detection of photofragments.

 photo     photo  photo

Contact Person at LCVU: Maurice Janssen, email: mhmj@chem.vu.nl